Abstract
The objective of this exploratory narrative review is to highlight the relevance of cyanobacteria and microalgae which possess remarkable metabolic diversity and ecological adaptability and can produce metabolites with antioxidant, antimicrobial, antiviral, anti-inflammatory, photoprotective, and antitumor properties, in addition to offering solutions in environmental biotechnology. Methodology was based on an exploratory search that was conducted in academic databases covering the period from 2015 to 2025, using non-systematic criteria. The findings were organized into thematic areas and contextualized using research conducted in Costa Rica. Results indicate that in the health sector, compounds such as phycocyanin, cyanovirin-N, dolastatin 10, and fucoxanthin are being evaluated as potential therapies against cancer, HIV, emerging viruses, and inflammatory diseases. In cosmetics, polysaccharides and mycosporine-like amino acids (MAAs) exhibit moisturizing, anti-aging, and photoprotective effects. In pharmaceutical nanotechnology, various metabolites function as nanocarriers, enhancing drug bioavailability and specificity. In agriculture, they function as biofertilizers, bio stimulants, and biocontrol agents, improving yield, enhancing nutritional quality, and reducing agrochemical use. In the environmental field, they are effective in bioremediation of heavy metals, microplastics, antibiotics, and other pollutants, as well as in carbon capture and biofuel production, aligning with circular economy principles. It is concluded that in Costa Rica, laboratories at UNA, UCR, and TEC are actively researching local species for industrial, therapeutic, and ecological purposes. These microorganisms represent a strategic alternative to address health, agricultural, and environmental challenges; however, further progress is needed in regulation, standardization, scalability, and toxicological evaluation to enable effective implementation.
References
Abbas, M., Ni, L., & Du, C. (2025). Using PyCaret to model Chlorella vulgaris's growth response to salinity and oil contamination for crude oil bioremediation. Environmental Technology, 46(7), 977-990. https://doi.org/10.1080/09593330.2024.2374027
Armario-Najera, V., Blanco-Perera, A., Shenoy, S. R., Sun, Y., Marfil, S., Muñoz-Basagoiti, J., ... & Christou, P. (2022). Physicochemical characterization of the recombinant lectin scytovirin and microbicidal activity of the SD1 domain produced in rice against HIV-1. Plant Cell Reports, 41(4), 1013-1023. https://doi.org/10.1007/s00299-022-02834-5
Bishoyi, A. K., Sahoo, C. R., & Padhy, R. N. (2023). Recent progression of cyanobacteria and their pharmaceutical utility: an update. Journal of Biomolecular Structure and Dynamics, 41(9), 4219-4252. https://doi.org/10.1080/07391102.2022.2062051
Budzianowska, A., Banaś, K., Budzianowski, J., & Kikowska, M. (2025). Antioxidants to defend healthy and youthful skin—current trends and future directions in cosmetology. Applied Sciences, 15(5), 2571. 15(5), 1-63. https://doi.org/10.3390/app15052571
CIB s.f. https://www.tec.ac.cr/microalgas
Bitsch, P., Dessin, C., Bitsch, S., Voss, J., Becker, J., Sharma, P., ... & Kolmar, H. (2025). Evaluation of Potency and Specificity of Cryptophycin‐Loaded Antibody‐Drug Conjugates. ChemBioChem, 26(2), e202400738. https://doi.org/10.1002/cbic.202400738
Chen, J., Wang, B., Shen, L., & Huang, Y. (2025). Microalgae-carrying nanomedicine for bioadhesive drug delivery for treating chemotherapy-induced intestinal injury treatment. Asian Journal of Pharmaceutical Sciences, 20(2),101024. https://doi.org/10.1016/j.ajps.2025.101024
Chen, W., & Zhang, Z. (2025). Recent Advances in Understanding the Clinical Responses of Brentuximab Vedotin in Lymphoma and the Correlation with CD30 Expression. OncoTargets and Therapy, 1-14. https://doi.org/10.2147/OTT.S487088
CIB, s.f. https://www.tec.ac.cr/microalgas
Cirne-Santos, C. C., Barros, C. S., da Silva, A. C. R., Kurpan, D., Oliveira, W. D. S. C., Vasconcellos, B. M., ... & do Valle, A. F. (2024). Arthrospira maxima extract prevents and cures Zika virus infection: in vitro analysis with VERO cells. Algal Research, 79, 103479. https://doi.org/10.1016/j.algal.2024.103479
Cichoński, J., & Chrzanowski, G. (2022). Microalgae as a source of valuable phenolic compounds and carotenoids. Molecules, 27(24), 8852. https://doi.org/10.3390/molecules27248852
Cock, I. E., & Cheesman, M. J. (2023). A review of the antimicrobial properties of cyanobacterial natural products. Molecules, 28(20), 7127. https://doi.org/10.3390/molecules28207127
Copat, C., Favara, C., Tomasello, M. F., Sica, C., Grasso, A., Dominguez, H. G., ... & Ferrante, M. (2025). Astaxanthin in cancer therapy and prevention. Biomedical Reports, 22(4), 1-9. https://doi.org/10.3892/br.2025.1944
Cruz, C. G., da Rosa, A. P. C., & Costa, J. A. V. (2023). Identification of the phytohormones indole‐3‐acetic acid and trans‐zeatin in microalgae. Journal of Chemical Technology & Biotechnology, 98(4), 1048-1056. https://doi.org/10.1002/jctb.7312
Cunha, S. A., Coscueta, E. R., Nova, P., Silva, J. L., & Pintado, M. M. (2022). Bioactive hydrolysates from Chlorella vulgaris: Optimal process and bioactive properties. Molecules, 27(8), 2505. https://doi.org/10.3390/molecules27082505
D’Angelo Costa, G. M., & Maia Campos, P. M. B. G. (2024). Development of cosmetic formulations containing olive extract and Spirulina sp.: Stability and clinical efficacy studies. Cosmetics, 11(3), 68. https://doi.org/10.3390/cosmetics11030068
da Gama, R. C. N., de Siqueira Castro, J., Marangon, B. B., de Jesus Junior, M. M., Ribeiro, V. J., da Silva, J., & Calijuri, M. L. (2025). Microalgae bioinputs as disruptive technology for a sustainable agriculture: a systematic and bibliometric review. Journal of Environmental Chemical Engineering, 13(2),116034. https://doi.org/10.1016/j.jece.2025.116034
Donoso, A., González-Durán, J., Muñoz, A. A., González, P. A., & Agurto-Muñoz, C. (2021). Therapeutic uses of natural astaxanthin: An evidence-based review focused on human clinical trials. Pharmacological Research, 166, 105479. https://doi.org/10.1016/j.phrs.2021.105479
Dupré, C., Hammouda, M. B., Legrand, J., Grizeau, D., Ploux, O., Méjean, A., ... & Michel, S. (2023, October). An ecofriendly process to produce secondary metabolites from Nostoc species; application to the biosynthesis of Cryptophycine within photobioreactors. In Microbres 2023-18è Congrès National de La SFM. Revisado en https://u-paris.hal.science/hal-04237134/
Durdakova, M., Kolackova, M., Ridoskova, A., Cernei, N., Pavelicova, K., Urbis, P., ... & Huska, D. (2024). Exploring the potential nutritional benefits of Arthrospira maxima and Chlorella vulgaris: A focus on vitamin B12, amino acids, and micronutrients. Food Chemistry, 452, 139434 https://doi.org/10.1016/j.foodchem.2024.139434
Eckstien, D., Maximov, N., Margolis, N., & Raanan, H. (2024). Towards sustainable biocontrol: inhibition of soil borne fungi by microalgae from harsh environments. Frontiers in Microbiology, 15, 1433765. https://doi.org/10.3389/fmicb.2024.1433765
Ferreira, A., Belachqer-El Attar, S., Villaró-Cos, S., Ciardi, M., Soriano-Molina, P., López, J. L. C., ... & Gouveia, L. (2025). Piggery wastewater treatment by solar photo-Fenton coupled with microalgae production. Water Research, 271, 122869. https://doi.org/10.1016/j.watres.2024.122869
García-Encinas, J. P., Ruiz-Cruz, S., Juárez, J., Ornelas-Paz, J. D. J., Del Toro-Sánchez, C. L., & Márquez-Ríos, E. (2025). Proteins from Microalgae: Nutritional, Functional and Bioactive Properties. Foods, 14(6), 921. https://doi.org/10.3390/foods14060921
González, C., & Soler, A. (2024). Infant Nutrition: Breast milk substitutes and gut-brain axis improved by microalgae. Functional Food Science-Online ISSN: 2767-3146, 4(12), 479-494. https://doi.org/10.31989/ffs.v4i12.1447
Hadiyanto, H., Joelyna, F. A., Khoironi, A., Sudarno, S., Safaat, J. A., Pratama, W. D., & Nur, M. M. A. (2025). Harnessing Chlorella vulgaris-Aspergilus niger Interactions for Effective Microplastic Removal in Aquatic Ecosystems. Waste and Biomass Valorization, 1-17. https://doi.org/10.1007/s12649-025-03062-0
Hassanpour, H. (2024). ROS regulation in Dunaliella salina by fulvic acid: induction of enzymes related to the ascorbate–glutathione pathway and antioxidant metabolites. Journal of Applied Phycology, 36(6), 3231-3241. https://doi.org/10.1007/s10811-024-03346-3
Ilieva, Y., Zaharieva, M. M., Kroumov, A. D., & Najdenski, H. (2024). Antimicrobial and Ecological Potential of Chlorellaceae and Scenedesmaceae with a Focus on Wastewater Treatment and Industry. Fermentation, 10(7), 341. https://doi.org/10.3390/fermentation10070341
Jawad, H., & Alghanmi, H. (2025). Influence of Two Nutritional Factors (Nitrate and Phosphate) on the Lutein Composition of Coelastrella saipanensis Alga and Estimation of Its Antioxidant Property. Egyptian Journal of Aquatic Biology and Fisheries, 29(1), 1933-1944. https://ejabf.journals.ekb.eg/article_410916_55c7d8336c2220a73a069a0711bc84b1.pdf
Jeon, Y. N., Ryu, S. J., Sathiyaseelan, A., & Baek, J. S. (2025). Bioactive Molecules of Microalgae Haematococcus pluvialis–Mediated Synthesized Silver Nanoparticles: Antioxidant, Antimicrobial, Antibiofilm, Hemolysis Assay, and Anticancer. Bioinorganic Chemistry and Applications, 2025(1), 8876478. https://doi.org/10.1155/bca/8876478
Hassan, S., Meenatchi, R., Pachillu, K., Bansal, S., Brindangnanam, P., Arockiaraj, J., ... & Selvin, J. (2022). Identification and characterization of the novel bioactive compounds from microalgae and cyanobacteria for pharmaceutical and nutraceutical applications. Journal of Basic Microbiology, 62(9), 999-1029. https://doi.org/10.1002/jobm.202100477
Havas, F., Krispin, S., Cohen, M., Loing, E., Farge, M., Suere, T., & Attia-Vigneau, J. (2022). A Dunaliella salina extract counteracts skin aging under intense solar irradiation thanks to its antiglycation and anti-inflammatory properties. Marine Drugs, 20(2), 104. https://doi.org/10.3390/md20020104
Hernández-García. (2022). Actividad del exopolisacárido sulfatado producido por la microalga Porphyridium cruentum sobre las bacterias Vibrio harveyi y Escherichia coli [Tesis de maestría], (CICESE, Mexico]. Recuperado junio 2025, de https://cicese.repositorioinstitucional.mx/jspui/bitstream/1007/3777/1/tesis_Ramiro%20Hern%C3%A1ndez%20Garc%C3%ADa_09%20oct%202022.pdf
Herrera, J. S., Casas, L., & Naranjo, K. (2023). Producción de protector solar a partir de Chlorella vulgaris. Ingeniería e Innovación, 11(1). Recuperado junio 2025, de https://www.researchgate.net/profile/Juan-Andres-Sandoval/publication/374053668_Produccion_de_protector_solar_a_partir_de_Chlorella_vulgaris/links/651b741f3ab6cb4ec6b726b3/Produccion-de-protector-solar-a-partir-de-Chlorella-vulgaris.pdf
Hosseinkhani, N., McCauley, J. I., & Ralph, P. J. (2022). Key challenges for the commercial expansion of ingredients from algae into human food products. Algal Research, 64, 102696. https://doi.org/10.1016/j.algal.2022.102696
Husain, A., Khanam, A., Alouffi, S., Shahab, U., Alharazi, T., Maarfi, F., ... & Ahmad, S. (2024). C-phycocyanin from cyanobacteria: a therapeutic journey from antioxidant defence to diabetes management and beyond. Phytochemistry Reviews, 1-19. https://doi.org/10.1007/s11101-024-10045-x
Kazemi, S., Kawaguchi, S., Badr, C. E., Mattos, D. R., Ruiz-Saenz, A., Serrill, J. D., ... & Ishmael, J. E. (2021). Targeting of HER/ErbB family proteins using broad spectrum Sec61 inhibitors coibamide A and apratoxin A. Biochemical pharmacology, 183, 114317. https://doi.org/10.1016/j.bcp.2020.114317
Khalifa, S. A., Shedid, E. S., Saied, E. M., Jassbi, A. R., Jamebozorgi, F. H., Rateb, M. E., ... & El-Seedi, H. R. (2021). Cyanobacteria—From the oceans to the potential biotechnological and biomedical applications. Marine Drugs, 19(5), 241. https://doi.org/10.3390/md19050241
Kallifidas, D., Dhakal, D., Chen, M., Chen, Q. Y., Kokkaliari, S., Colon Rosa, N. A., ... & Luesch, H. (2024). Biosynthesis of Dolastatin 10 in marine cyanobacteria, a prototype for multiple approved cancer drugs. Organic letters, 26(7), 1321-1325. https://doi.org/10.1021/acs.orglett.3c04083.
Khan, F., Akhlaq, A., Rasool, M. H., & Srinuanpan, S. (2024). Cyanobacterial Bioactive Compounds: Synthesis, Extraction, and Applications. In Pharmaceutical and Nutraceutical Potential of Cyanobacteria (pp. 215-243). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-031-45523-0_9
Kossalbayev, B. D., Kakimova, A. B., Sadvakasova, A. K., Bauenova, M. O., Balouch, H., Lyaguta, M. A., ... & Allakhverdiev, S. I. (2025). Strategies for genetic modification of microalgae to improve the production efficiency of liquid biofuel. International Journal of Hydrogen Energy, 100, 1301-1314. https://doi.org/10.1016/j.ijhydene.2024.12.306
LABIOMIC, s.f. https://cimar.ucr.ac.cr/modulos-laboratorios-y-areas-de-investigacion-del-cimar/microalgas/
LABMA, s.f. https://www.biologia.una.ac.cr/index.php/laboratorios/labma
Li, Z., Zhu, X., Wu, Z., Sun, T., & Tong, Y. (2023). Recent advances in cyanotoxin synthesis and applications: a comprehensive review. Microorganisms, 11(11), 2636. https://doi.org/10.3390/microorganisms11112636
Li, C., Liang, Y., Miao, Q., Ji, X., Duan, P., & Quan, D. (2024). The Influence of Microalgae Fertilizer on Soil Water Conservation and Soil Improvement: Yield and Quality of Potted Tomatoes. Agronomy, 14(9), 2102. https://doi.org/10.3390/agronomy14092102
Loyte, A., Suryawanshi, J., Bellala, S. S. K., Marode, R. V., & Devarajan, Y. (2024). Current status and obstacles in the sustainable synthesis of biohydrogen from microalgal species. Results in Engineering, 24, 103455. https://doi.org/10.1016/j.rineng.2024.103455
Luesch, H., Ellis, E. K., Chen, Q. Y., & Ratnayake, R. (2025). Progress in the discovery and development of anticancer agents from marine cyanobacteria. Natural Product Reports. 42(2): 208-56. https://doi.org/10.1039/d4np00019f
Masoumi, S., Zokaei, M., Ahmadvand, A., Ghalamkarpour, N., Asadimanesh, N., Azarimatin, A., ... & Nabi-Afjadi, M. (2025). Microalgae: A Treasure Trove of Anticancer Nutraceuticals and Promising Therapeutic Mechanisms. Advanced Biomedical Research, 14(1), 5. https://doi.org/10.4103/abr.abr_101_24
Matsuo, T., Ito-Miwa, K., Hoshino, Y., Fujii, Y. I., Kanno, S., Fujimoto, K. J., & Miyashita, H. (2025). Archaean green-light environments drove the evolution of cyanobacteria’s light-harvesting system. Nature Ecology & Evolution, 9, 1-14. https://doi.org/10.1038/s41559-025-02637-3
Mazur-Marzec, H., Cegłowska, M., Konkel, R., & Pyrć, K. (2021). Antiviral cyanometabolites—A review. Biomolecules, 11(3), 474. https://doi.org/10.3390/biom11030474
Mittal, R., & Ranade, V. (2023). Bioactives from microalgae: A review on process intensification using hydrodynamic cavitation. Journal of Applied Phycology, 35(3), 1129-1161. https://doi.org/10.1007/s10811-023-02945-w
Montoya-Arroyo, A., Lehnert, K., Muñoz-González, A., Schmid-Staiger, U., Vetter, W., & Frank, J. (2022). Tocochromanol profiles in Chlorella sorokiniana, Nannochloropsis limnetica and Tetraselmis suecica confirm the presence of 11′-α-tocomonoenol in cultured microalgae independently of species and origin. Foods, 11(3), 396. https://doi.org/10.3390/foods11030396
Morone, J., Hentschke, G. S., Oliveira, I. B., Vasconcelos, V., Martins, R., & Lopes, G. (2025). Secondary metabolites of cyanobacteria from Cape Verde Archipelago act as NO donors with potential application in dermatology and cosmetics. Algal Research, 86,103952. https://doi.org/10.1016/j.algal.2025.103952
Mutalipassi, M., Riccio, G., Mazzella, V., Galasso, C., Somma, E., Chiarore, A., ... & Zupo, V. (2021). Symbioses of cyanobacteria in marine environments: Ecological insights and biotechnological perspectives. Marine Drugs, 19(4), 227. https://doi.org/10.3390/md19040227
Nagle, A., Bhadra, S., Nayak, S., Patel, A., & Sevda, S. (2025). Optimizing Scenedesmus obliquus Cultivation for Enhanced Nutrient Recovery from Human Urine in a Circular Economy Framework. Journal of Hazardous, Toxic, and Radioactive Waste, 29(2), 04025005. https://doi.org/10.1061/JHTRBP.HZENG-1388
Osathanunkul, M., Thanaporn, S., Karapetsi, L., Nteve, G. M., Pratsinakis, E., Stefanidou, E., ... & Madesis, P. (2025). Diversity of Bioactive Compounds in Microalgae: Key Classes and Functional Applications. Marine Drugs, 23(6), 222. https://doi.org/10.3390/md23060222
Paterson, S., Majchrzak, M., Alexandru, D., Di Bella, S., Fernández-Tomé, S., Arranz, E., ... & Hernández-Ledesma, B. (2024). Impact of the biomass pretreatment and simulated gastrointestinal digestion on the digestibility and antioxidant activity of microalgae Chlorella vulgaris and Tetraselmis chuii. Food Chemistry, 453, 139686. https://doi.org/10.1016/j.foodchem.2024.139686
Poorniammal, R., Prabhu, S., Jernisha, J., & Dufossé, L. (2025). Microbial Pigments in Cosmetics and Personal Care. Microbial Colorants: Chemistry, Biosynthesis and Applications, 367-384. https://doi.org/10.1002/9781394287888.ch16
Qamar, H., Hussain, K., Soni, A., Khan, A., Hussain, T., & Chénais, B. (2021). Cyanobacteria as natural therapeutics and pharmaceutical potential: Role in antitumor activity and as nanovectors. Molecules, 26(1), 247. https://doi.org/10.3390/molecules26010247
Qian, C., Wang, H., Bi, J., Zheng, X., Li, R., Luo, H., ... & Cao, J. (2025). A biomimetic manganese-phycocyanin nanodrug-carrying system and its sonodynamic-immunological anti-tumor therapy. International Journal of Pharmaceutics, 677, 125626. https://doi.org/10.1016/j.ijpharm.2025.125626
Raghul, E. I., & Aravindan, K. (2024). Chemotherapeutic Effect of Lutein on TGFβ/Smad2 Signalling Molecules Gene Expression in Oral Cancer Cells. In Recent Developments in Microbiology, Biotechnology and Pharmaceutical Sciences (pp. 22-24). CRC Press. Recuperado junio 2025, de https://www.taylorfrancis.com/chapters/edit/10.1201/9781003618140-7/chemotherapeutic-effect-lutein-tgf%CE%B2-smad2-signalling-molecules-gene-expression-oral-cancer-cells-raghul-aravindan
Rigobello-Masini, M., & Masini, J. C. (2021). Metabolites with beneficial bioactivities and factors affecting their productivity in microalgae and cyanobacteria. Exploratory Biotechnlogy Research, 1(1), 1-21. https://dx.doi.org/10.47204/EBR.1.1.2021.1-21
Robles-Bañuelos, B., Durán-Riveroll, L. M., Rangel-López, E., Pérez-López, H. I., & González-Maya, L. (2022). Marine cyanobacteria as sources of lead anticancer compounds: a review of families of metabolites with cytotoxic, antiproliferative, and antineoplastic effects. Molecules, 27(15), 4814. https://doi.org/10.3390/molecules27154814
Rodrigues, F., Reis, M., Ferreira, L., Grosso, C., Ferraz, R., Vieira, M., ... & Martins, R. (2024). The Neuroprotective Role of Cyanobacteria with Focus on the Anti-Inflammatory and Antioxidant Potential: Current Status and Perspectives. Molecules, 29(20), 4799. https://doi.org/10.3390/molecules29204799
Ribeiro-Filho, J., Teles, Y. C. F., Igoli, J. O., & Capasso, R. (2022). New trends in natural product research for inflammatory and infectious diseases. Frontiers in Pharmacology, 13, 1-4. https://doi.org/10.3389/fphar.2022.975079
Rumin, J., Nicolau, E., Gonçalves de Oliveira Junior, R., Fuentes-Grünewald, C., Flynn, K. J., & Picot, L. (2020). A bibliometric analysis of microalgae research in the world, Europe, and the European Atlantic area. Marine drugs, 18(2), 79. https://doi.org/10.3390/md18020079
Saad, M. H., El-Fakharany, E. M., Salem, M. S., & Sidkey, N. M. (2020). The use of cyanobacterial metabolites as natural medical and biotechnological tools. Journal of Biomolecular Structure and Dynamics, 40(6), 2828-2850. https://doi.org/10.1080/07391102.2020.1838948
Sarker, N. K., & Kaparaju, P. (2024). Microalgal Bioeconomy: A Green Economy Approach Towards Achieving Sustainable Development Goals. Sustainability (2071-1050), 16(24). https://doi.org/10.3390/su162411218
Shangguan, F., Ma, N., Chen, Y., Zheng, Y., Ma, T., An, J., ... & Yang, H. (2025). Fucoxanthin suppresses pancreatic cancer progression by inducing bioenergetics metabolism crisis and promoting SLC31A1-mediated sensitivity to DDP. International Journal of Oncology, 66(4), 31. https://doi.org/10.3892/ijo.2025.5737
Silva-Benavides, A. M., Jiménez-Conejo, N., Solís-Calderón, C., & Barrantes, B. A. (2025). Estudio preliminar sobre la capacidad de remoción de arsénico por las microalgas nativas de Costa Rica Chlorella vulgaris y Scenedesmus dimorfus (Chlorophyceae). Revista de Biología Tropical, 73(S1), e64045-e64045. https://doi.org/10.15517/rev.biol.trop.v73iS1.64045
Singh, K. B., Kaushalendra, & Rajan, J. P. (2022). Therapeutical and nutraceutical roles of cyanobacterial tetrapyrrole chromophore: recent advances and future implications. Frontiers in Microbiology, 13, 932459. https://doi.org/10.3389/fmicb.2022.932459
Suárez-Bernal, D. F., Marroquín-Morales, P., Carrillo-Rosas, S., & Caballero-Cerón, C. (2023). Optimizando la protección solar con Anabaena variabilis: Micosporinas como una alternativa de filtro solar. Revista de divulgación científica iBIO, 5(3), HS143-HS143. Junio 2025, Recuperado de https://revistaibio.com/ojs33/index.php/main/article/view/143
Tan, L. T., & Salleh, N. F. (2024). Marine Cyanobacteria: A Rich Source of Structurally Unique Anti-Infectives for Drug Development. Molecules, 29(22), 5307. https://doi.org/10.3390/molecules29225307
Tian, X., Wang, M., Liao, X., Chu, S., Cheng, H., Lin, X., & Luo, L. (2025). Removal of single and multi-heavy metals from piggery digestate by the electric field-microalgae system: Influences, kinetics and mechanisms. Algal Research, 86, 103934. https://doi.org/10.1016/j.algal.2025.103934
United Nations. (sf.) https://sdgs.un.org/goals?utm_source=chatgpt.com
Urrea-Victoria, V., Hernández, A. R., Castellanos, L., Alves, I. A., & Novoa, D. M. A. (2025). The role of mycosporine-like amino acids in skin care formulations: a patent review (2014–2024). Photochemical & Photobiological Sciences, 24, 1-15. https://doi.org/10.1007/s43630-025-00717-8
Vega, F. M., Vargas, M. F., Romero, M. C., Montero, K. M., & Romero, F. V. (2024). Advances in microalgal biotechnology in Costa Rica: contributions from the Costa Rica Institute of Technology. Tecnología en Marcha, 37(4), 48-62. https://doi.org/10.18845/tm.v37i9.7609
Vicerrectoría de Investigación.s.f. https://vinv.ucr.ac.cr/sigpro/web/researchers/106060101
Vujović, T., Paradžik, T., Babić Brčić, S., & Piva, R. (2025). Unlocking the therapeutic potential of algae-derived compounds in hematological malignancies. Cancers, 17(2), 318. https://doi.org/10.3390/cancers17020318
Wang, R. L., Li, M. J., Martin, G. J., & Kentish, S. E. (2025). Enhancing direct air carbon capture into microalgae: A membrane sparger design with carbonic anhydrase integration. Algal Research, 85, 103875. https://doi.org/10.1016/j.algal.2024.103875
Wang, S., & Luo, H. (2025). Dating the bacterial tree of life based on ancient symbiosis. Systematic Biology, syae071. https://doi.org/10.1093/sysbio/syae071
Williamson, E., Ross, I. L., Wall, B. T., & Hankamer, B. (2024). Microalgae: Potential novel protein for sustainable human nutrition. Trends in Plant Science, 29(3), 370-382. Revisado en https://www.cell.com/trends/plant-science/abstract/S1360-1385(23)00268-6
Yuan, R., Pu, J., Wu, D., Wu, Q., Huhe, T., Lei, T., & Chen, Y. (2022). Research priorities and trends on bioenergy: Insights from bibliometric analysis. International Journal of Environmental Research and Public Health, 19(23), 15881. https://doi.org/10.3390/ijerph192315881
Xavier, G., de Sousa, A. C. L. F., Dos Santos, L. Q., Aguiar, D., Gonçalves, E., & Siqueira, A. S. (2024). Structural and functional analysis of Cyanovirin-N homologs: Carbohydrate binding affinities and antiviral potential of cyanobacterial peptides. Journal of Molecular Graphics and Modelling, 129, 108718. https://doi.org/10.1016/j.jmgm.2024.108718
Xu, R., Lu, Y., Cai, L., & Zhang, L. (2025). Utilizing Extracellular Vesicles from Phaeodactylum tricornutum as a Novel Approach for Protecting the Skin from Oxidative Damage. ACS Biomaterials Science & Engineering. 11(6), 3400-3415. https://doi.org/10.1021/acsbiomaterials.4c02346
Yusupova, A., Kartabayeva, B., Sushchenko, R., Gaysina, K., Renganathan, P., & Gaysina, L. A. (2025). Antifungal Potential of Cyanobacterium Nostoc sp. BCAC 1226 Suspension as a Biocontrol Agent Against Phytopathogenic Fungi and Oomycetes. Applied Microbiology, 5(2), 46. hps://doi.org/10.3390/ applmicrobiol5020046
Zachee, G., Kayiranga, A., Nizeyimana, J. C., Tian, S., Rugema, J., You, L., ... & Su, J. Q. (2025). Removal of antibiotics and antibiotic resistance genes using microalgae-based wastewater treatment system: A bibliometric review and mechanism analysis. Journal of Water Process Engineering, 72, 107496. https://doi.org/10.1016/j.jwpe.2025.107496
Zeng, H., Wang, W., Zhang, L., & Lin, Z. (2024). HER3-targeted therapy: the mechanism of drug resistance and the development of anticancer drugs. Cancer Drug Resistance, 7, 14. https://dx.doi.org/10.20517/cdr.2024.11
Žunić, V., Hajnal-Jafari, T., Stamenov, D., Djurić, S., Tomić, J., Pešaković, M., ... & Jakopic, J. (2024). Application of microalgae-based biostimulants in sustainable strawberry production. Journal of Applied Phycology, 36(3), 1219-1231. https://doi.org/10.1007/s10811-023-03169-8

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright (c) 2025 Sandra Liliana Hernández-Salón, Sebastián Solano Montero, Ana Patricia Rojas Hernández , Adriana Carolina Hernández Calderón , Anielka Oporta Oporta (Autor/a)

